If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-60q^2+150=0
a = -60; b = 0; c = +150;
Δ = b2-4ac
Δ = 02-4·(-60)·150
Δ = 36000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{36000}=\sqrt{3600*10}=\sqrt{3600}*\sqrt{10}=60\sqrt{10}$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-60\sqrt{10}}{2*-60}=\frac{0-60\sqrt{10}}{-120} =-\frac{60\sqrt{10}}{-120} =-\frac{\sqrt{10}}{-2} $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+60\sqrt{10}}{2*-60}=\frac{0+60\sqrt{10}}{-120} =\frac{60\sqrt{10}}{-120} =\frac{\sqrt{10}}{-2} $
| 12x+2(6x-3)=8(x+2) | | 7x-15=8x-6 | | -2-9w=-10w | | 10-9q=-7q | | 56=79^x | | 7v+2=4v+20 | | 16.9+4y=7y+10 | | 3w+18=7w+22 | | 4u+17=7u-10 | | 32-3c=14 | | 12=37-3f | | 25-2b=15 | | 10(5g-10)=25 | | 6•x+3•x=18 | | 3(d+6)=24 | | 4a+18=22 | | 5-(2x-9)=22 | | 4z^2+20z+25=) | | 0,15(40-x)+0,12(x)=5,25 | | 4z^2+20z=-25 | | 25x^2-45x-21=0 | | 4s+26=118 | | 5x-2(-2x+11)=5 | | 6v+39=-25 | | (2x-9)=(5x-9) | | 6x-15=7x+9 | | 2^1-x=3 | | 3^x+5=15 | | 4(4x+4)=2(2x+5)+6 | | 20(2x+3)=-26(x-5) | | 17p+13=10p-13+7p | | p/2-2=-4 |